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Abstract

The object sizes in images are diverse, therefore, cap-
turing multiple scale context information is essential for se-
mantic segmentation. Existing context aggregation methods
such as pyramid pooling module (PPM) and atrous spa-
tial pyramid pooling (ASPP) design different pooling size
or atrous rate, such that multiple scale information is cap-
tured. However, the pooling sizes and atrous rates are cho-
sen manually and empirically. In order to capture object
context information adaptively, in this paper, we propose
an adaptive context encoding (ACE) module based on de-
formable convolution operation to argument multiple scale
information. Our ACE module can be embedded into other
Convolutional Neural Networks (CNN) easily for context
aggregation. The effectiveness of the proposed module is
demonstrated on Pascal-Context and ADE20K datasets. Al-
though our proposed ACE only consists of three deformable
convolution blocks, it outperforms PPM and ASPP in terms
of mean Intersection of Union (mIoU) on both datasets. All
the experiment study confirms that our proposed module is
effective as compared to the state-of-the-art methods.

1. Introduction

Semantic segmentation is a pixel wise classification
problem, where class prediction is assigned for each pixel
of an image. The development of deep learning brings se-
mantic segmentation into a new era. Starting from the Fully
Covolutional Network (FCN) [16], we have seen a rapid in-
crease in the research field of semantic segmentation based
on Convolutional Neural Networks (CNN) [25, 4, 2]. Those
methods boost the field and reach the state-of-the-art perfor-
mance on several semantic segmentation benchmarks.

However, multiple scale objects context understanding
is still a challenging problem. Some approaches have been

proposed to handle this problem. Following similar crite-
rion presented in [5], we group those methods into three
categories. First, image pyramid based methods: the input
image is decomposed to image pyramid, then DCNN (Deep
Convolutional Neural Network) is applied separately to ev-
ery resolution level of the image pyramid input [9, 24, 14].
In this way, different scale objects are captured from dif-
ferent level feature maps. Second, encoder-decoder based
methods: for encoder, convolution and pooling operations
are applied hierarchically to extract features, then the spa-
tial resolution is recovered in the decoder path by hier-
archically up-sampling and convolution operations. The
most representable architecture is U-Net [25] which has
been achieving promising result in medical image process-
ing field. And many other encoder-decoder based architec-
tures [2, 13, 1, 18, 19]. Third, spatial pyramid pooling strat-
egy based approaches: the feature maps are aggregated by
pooling operations or by atrous convolutions with multiple
rates. The atrous spatial pyramid pooling (ASPP) proposed
in DeepLabs [4, 5] and the pyramid pooling module (PPM)
presented in PSPNet [34] are two representative work in
this group.

The performance of Deeplabs [5, 6] and PSPNet [34] on
some benchmarks shows the effectiveness of their pyramid
pooling module. However, the rates of ASPP and PPM are
manually selected, which still cannot flexibly and image de-
pendently encode multi-scale information. In this paper, our
goal is to investigate is there a way to adaptively and input
image dependently aggregate the feature maps?

Rethinking of ASPP and atrous convolution, setting
different values of the atrous rate of atrous convolu-
tion operation endows the network with multiple effective
field-of-view, thus the ability of capturing multi-scale con-
text information. Therefore, if we can adaptively adjust the
field-of-view of the convolution operations in the aggrega-
tion part, it would be possible for the network to aggregate
contextual information input dependently.
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Interestingly, Deformable Convolution Networks (DCN)
is proposed recently in [8, 36]. For deformable convolu-
tion, the sampling locations are learnable, which can be
highly integrated into our purpose. Therefore, in this pa-
per, we propose an adaptive context encoding (ACE) mod-
ule based on deformable convolution, more precisely, we
replace the ASPP module or PPM by three deformable con-
volution blocks.

This idea is evaluated on Pascal-Context [21] and
ADE20K [35] datasets for semantic segmentation. We ex-
perimentally demonstrate that our proposed method im-
proves the segmentation result consistently over the base-
line methods: ASPP and PPM. Especially, a more robust
performance is shown under different bath size settings dur-
ing training process. Moreover, even though our goal is to
find a better multi-scale aggregation module compared to
ASPP and PPM, our method achieves the state-of-the-art
on Pascal-Context dataset with 53.6% mIoU and promis-
ing results on ADE20K dataset with a final score of 0.5535.
Furthermore, our ACE module can be easily embedded into
other networks for further improvement.

The reminder of this paper is organized as follows. First,
in Sec. 2, we review the related work on semantic segmen-
tation. Next, in Sec 3, we present our proposed method.
Then in Sec. 4, the experimental results and analysis are
presented. Finally, discussion and conclusions are drawn in
Sec. 5.

2. Related Work
Deep learning based semantic segmentation is rapidly

developed and great progress has been achieved. DCNN
with pooling and convolution with striding operation is in-
variant to local image transformations, thus can extract ab-
stractions of data hierarchically [32]. On one hand, this abil-
ity is beneficial for high-level vision tasks such as classifi-
cation. On the other hand, it can bound the performance of
pixel wise dense prediction tasks where spatial information
is important [3]. Semantic segmentation thus is challeng-
ing as it needs to simultaneously perform classification and
localization.

There are many works proposed to improve semantic
segmentation which can be briefly divided into two direc-
tions: Resolution Enlarging and Context Extraction.

2.1. Resolution Enlarging

Atrous convolution which is inspired by the atrous al-
gorithm [17] is claimed to be useful for extracting denser
feature maps which can further alleviate the detail infor-
mation loss. Thus it is widely used in semantic seg-
mentation to enlarge the receptive-field-of-view and extract
dense feature [4, 6, 27]. Besides, encoder-decoder archi-
tectures employ decoder to up-sampling the resolution hi-
erarchically and composite for the information loss of en-

coder [25, 13, 29]. Thus, we briefly group them into two
categories: atrous convolution and encoder-decoder based
approaches [27, 28], which will be introduced in the fol-
lowing paragraphs.

Atrous convolution based methods Typically, for
DCNN, such as Resnet [11], the spatial resolution of the
output feature maps of the final layer is 32 times smaller
compared to the resolution of input images, which is harm-
ful for pixel wise tasks. Atrous convolution is used to en-
large the receptive field while preserving the resolution of
the feature map. DeepLabs especially Deeplabv2 [4] and
Deeplabv3 [5] are a series of methods which investigate
atrous convolution for semantic segmentation and are con-
sidered as one of the state-of-the-art techniques. Similar
feature extraction DCNN backbone is also used in PSP-
Net [34], where the resolution of the final layer feature maps
is 8 times smaller. Atrous convolution is an effective solu-
tion for spatial information loss. However, the larger fea-
ture maps and larger convolution kernels make the network
require higher computational resource. Recently, in [27],
Wu et al. propose Joint Pyramid Up-sampling (JPU) to re-
duce the memory and time consuming atrous convolutions,
while keeping the ability of extracting high resolution fea-
ture maps.

Encoder-Decoder based methods In an encoder-
decoder network, the spatial resolution is gradually up-
sampled at the decoder part. DeconvNet [20] uses decon-
volutional layers [20] to recover the resolution which can
get full resolution final prediction by a complex decoder
part. U-Net [25] introduces skip connections from encoder
to decoder, thus the information from the skip connection is
used to compensate for the information loss. RefineNet [13]
elaborately design an up-sampling path to fuse low level
and high level features. DeepLabv3+ [6] employs both skip
connection and atrous convolution, thus reaching the state-
of-the-art performance on some benchmarks to date.

2.2. Context Extraction

Scene context is important for extracting semantics.
There are many approaches proposed to extract useful con-
text information. Spatial pyramid pooling is proven to be ef-
fective for extracting context information [15, 34, 4]. More-
over, attention mechanism is proposed to learn the object
context map in [29]. In [23], Peng et al. use convolution
operations with large kernel size to extract classification in-
formation. Among those approaches, the spatial pyramid
pooling based methods are popular. Spatial pyramid pool-
ing aims for extracting multiple scale context information
from feature maps. For semantic segmentation, pyramid
pooling module (PPM) [34] investigates pooling operation
as a tool for multiple scale context aggregation and atrous
spatial pyramid pooling (ASPP) [5] exploits atrous convo-
lution for pyramid pooling. These two modules will be de-
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Figure 1. (a) Pyramid pooling module (PPM) proposed in PSPNet [34]. (b) Atrous spatial pyramid pooling (ASPP) module proposed in
DeepLabs [5, 4].

scribed in detail as it is highly related to the proposed ap-
proach.

Pyramid Pooling Module (PPM) Global Average Pool-
ing (GAP) is used to obtain global contextual prior in
ParseNet [15] for semantic segmentation. However, as
pointed out in [34], fusing one feature map into one single
value may cause information loss. Thus, in [34], Zhao et al.
propose to hierarchically apply pooling operations with four
scales as illustrated in Figure 1 (a), resulting in feature maps
with four levels of resolution. The coarsest level is obtained
by applying GAP on the feature maps and get a single vec-
tor output. For the other levels, the feature maps are first
divided into sub-regions, then a global pooling is applied
to every sub-region. The numbers of sub-region are set to
2× 2, 3× 3, 6× 6 for each level respectively in paper [34]
and illustrated in Figure 1 (a). This PPM can thus extract
the information at different scales for context aggregation.

Atrous Spatial Pyramid Pooling (ASPP) ASPP mod-
ule is first proposed in [4] and further revised in [5]. In
ASPP module, as shown in Figure 1 (b), different atrous
rates are used to extract multiple scale information. Be-
sides, in order to capture global context prior, similar to
ParseNet [15] and PPM [34], GAP is applied. In summary,
one 1 × 1 convolution block and three 3 × 3 atrous convo-
lution blocks with different atrous rates (6, 12, 18 respec-
tively), and one GAP block are employed in parallel.

While Deeplabs and PSPNet reach the state-of-the-art
performance on different benchmarks when they are pro-
posed , and they are still have influence in semantic seg-
mentation, it is important and interesting to investigate two
following aspects: (1) It is obviously observed that the num-
bers of sub-region of PPM in PSPNet and the atrous rates
of ASPP module from Deeplabs are selected empirically.
The choice of those parameters need to be adjusted ac-
cording to the applications, such as in [10], 2 × 2, 3 × 3,
5 × 5, 6 × 6 sub-regions are chosen for their RMP (Resid-
ual Multi-kernel Pooling) module which is similar to PPM.
It is essential to avoid choosing those parameters manually

and empirically. (2) PPM and ASPP both extract the con-
text information by sampling from rigid rectangle regions
which contain pixels from different object categories. How-
ever, for a certain pixel, the surrounding pixels which be-
long to the same category should contribute more. As also
pointed out in [31], Yuan and Wang hold similar opinion
and they define object context as the set of pixels which be-
longs to the same category. While Yuan and Wang utilize
self-attention [26] mechanism to exploit context from pix-
els that from the same object class, in this work, inspired by
the original ASPP, we will investigate the possibility to ag-
gregate multi-scale information by adjusting adaptively the
field-of-view of the convolution operation.

3. Method
In this section, we will discuss our proposed ACE mod-

ule in detail. The most relevant atrous and deformable con-
volution operations are first introduced, then the ACE mod-
ule and the network architecture are demonstrated.

3.1. Convolution Operation

Atrous convolution is chosen as the tool for the context
aggregation module in ASPP [5]. For two dimensional sig-
nals such as images, atrous convolution can be written as:

y[i] =

K∑
k

x[i + r · k] · w[k], (1)

where y indicates the output after atrous convolution oper-
ation, i is the location, x is the input signal, r is the atrous
rate, w denotes the filter with a length of K and k enumer-
ates K. When r = 1, the equation stands for standard con-
volution. The value of r controls the sampling location of
atrous convolution. In ASPP, different sizes of field-of-view
are obtained by setting different r values. This observation
leads to our claim that a learnable field-of-view can thus be
obtained by learnable sampling location of the convolution
operation.

3



Feature 
Extraction

Prediction Upsampling

Feature 
Aggreagtion

POOL

POOL

POOL

POOL

Conv + UPSAMPLE Prediction

POOL

1

2

3

6

1

1x1 Conv

3x3 Conv
Rate=6

3x3 Conv
Rate=12

3x3 Conv
Rate=18

Conv + UPSAMPLE

Prediction

DCB DCB DCB
1x1 Conv Upsampling

(a)

Feature 
Extraction

Prediction Upsampling

Feature 
Aggreagtion

POOL

POOL

POOL

POOL

Conv + UPSAMPLE Prediction

POOL

1

2

3

6

1

1x1 Conv

3x3 Conv
Rate=6

3x3 Conv
Rate=12

3x3 Conv
Rate=18

Conv + UPSAMPLE

Prediction

DCB DCB DCB
1x1 Conv Upsampling

(b)

Figure 2. (a) A brief illustration of context extraction based semantic segmentation pipeline. (b) Proposed adaptive context aggregation
(ACE) module.

It is interesting to notice that the recent proposed de-
formable convolution [8, 36] meets our requirement where
convolution with learnable sampling location is proposed.
Dai et al. propose Deformable Convolutional Netowrks
(DCNv1) in [8] and Zhu et al. propose a revised version
(DCNv2) in [36]. Eq. 2 presents the deformable convolu-
tion operation from DCNv1:

y[i] =

K∑
k

x[i + k + ∆k] · w[k], (2)

where ∆k denotes offsets. The regular sampling locations
k is then augmented with the irregular offset ∆k.

It is clearly observed that the main difference between
Eq. 1 and Eq. 2 is that the sampling locations of atrous con-
volution are always regular grid. For example, the sam-
pling grid is square for a 3 × 3 kernel, no matter what the
value of atrous rate r is. But the offset ∆k is input depen-
dent, without regular shape constraint. Besides, compared
to the manually set atrous rate r, the offset ∆k is learned
by the network. In [8], Zhu et al. further investigate de-
formable convolution and find out that the spatial support of
the deformable convolution operation from DCNv1 can ex-
tend beyond the pertinent region. Therefore, they propose
DCNv2 to let the network better focus on relevant image
content by introducing a modulation mechanism to manip-
ulate the spatial support region. This modulated deformable
convolution can be expressed as follows:

y[i] =

K∑
k

x[i + k + ∆k] · w[k] ·∆mk, (3)

where ∆mk is the learnable modulation value with range of
[0,1]. This modulation value can further adjust the sampled
pixel’s contribution, thus the spatial support regions are ad-
justed better.

Therefore, in this work, we propose to employ the de-
formable convolution operation from DCNv2 as the tool for
context aggregation.

3.2. Network Architecture

A brief illustration of context extraction based seman-
tic segmentation pipeline is depicted in Figure 2 (a).
For a given input image, convolution networks such as
ResNet [11], Xception [7], are applied to extract feature
maps, then feature aggregation is employed to extract con-
text information. Based on the aggregated feature informa-
tion, the final prediction is made and up-sampled to the orig-
inal input spatial resolution.

In this paper, we only focus on feature aggregation part.
Our proposed ACE module is shown in Figure 2 (b). After
feature extraction, the input image is represented by fea-
ture maps with size of H ×W × C where H and W are
the height and width of the feature maps respectively, and
C indicates the number of feature channels. In ACE mod-
ule, three deformable convolution blocks (DCB) are applied
to aggregate the feature maps. Each block is consists of
“Deformable Convolution (DConv)→ BN (BatchNorm)→
ReLU (Rectified Linear Unit)” operations. The outputs size
after each deformable convolution block are H ×W × C

4 ,
H ×W × C

8 , and H ×W × C
8 separately. After ACE mod-

ule, one 1× 1 convolution operation is applied for the final
segmentation map prediction. Then the predicted result is
up-sampled by ‘bilinear’ up-sampling operation to the orig-
inal image spatial resolution directly.

4. Experiment

In this section, we validate our proposed module on two
public datasets Pascal-Context [21] and ADE20K [35]. We
first introduce the implementation details. Then the ex-
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periment results are presented and analyzed on these two
datasets. The performance of the proposed method is eval-
uated in terms of two common measures, namely pixel ac-
curacy (pixAcc) and mean Intersection of Union (mIoU).

In order to illustrate the effectiveness of the proposed
method, we will compare it with ASPP and PPM. It is worth
noticing that Deeplabv3 and PSPNet utilize atrous convolu-
tion for feature extraction which is memory and time con-
suming. In [27], Wu et al. propose a Joint Pyramid Up-
sampling (JPU) module to replace the heavy feature ex-
traction module. Their method (FastFCN) reduces more
than three times the computation complexity and reaches
slightly better performance. As a result of the limited com-
putational resource we have, we adopt the FastFCN’s fea-
ture extraction part as backbone for comparison. In other
words, only the feature aggregation (head) part is replaced
with ASPP (atrous spatial pyramid pooling), PPM (pyramid
pooling module) and our proposed ACE ( adaptive context
encoding) module.

4.1. Implementation Details

The implementation is based on the PyTorch [22] im-
plementation of FastFCN [27]1 which is similiar to [33]2

and the implementation of Deformable ConvNets3,4. For
fair comparison, we adopt the original training strategy
of FastFCN [27]. Specifically, “poly” learning rate pol-
icy is used: lr = baselr ∗ (1 − iter

total iter )power, where
power = 0.9. The initial base learning rate is set to 0.001
for batch size 16 for PASCAL-Context [21] and 0.01 for
ADE20K [35]. Besides, it is adjusted relatively to batch
size value if other batch size is chosen: baselr adjusted =
baselr
16 ∗batch size. The networks are trained for 80 epochs

with SGD for PASCAL-Context [21] and 120 epochs for
ADE20K [35]. The momentum is 0.9 and the weight decay
is set to 0.0001. For data augmentation, the image is ran-
domly flipped and scaled between 0.5 to 2. Then the image
is cropped to a fixed size (480 × 480). Pixel-wise cross-
entropy loss and auxiliary loss as presented in [34, 27] are
used, the weight for auxiliary loss is set to 0.2.

Due to limited access to multi-GPUs computational
resource, our experiment includes training on a single
GeForce RTX 2080 GPU for small batch sizes and training
on 4 × GeForce GTX 1080 GPUs for bath size 16.

4.2. Pascal-Context

Dataset Pascal-Context dataset [21] is based on PAS-
CAL VOC 2010 with additional annotations which pro-
vide annotations for the whole scene. Training images are
4,998 (pascal-train) and testing images contain 5,105 im-

1https://github.com/wuhuikai/FastFCN
2https://github.com/zhanghang1989/PyTorch-Encoding
3https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch
4https://github.com/open-mmlab/mmdetection

Batch Size Head pixAcc% mIoU%

4
ASPP 75.42 43.62
PPM 75.58 45.68

Proposed 77.68 48.07

6
ASPP 77.19 46.53
PPM 77.45 48.32

Proposed 78.35 49.36

16
ASPP 78.68 49.04
PPM 78.41 49.54

Proposed 78.85 50.35

Table 1. Segmentation results on PASCAL-Context dataset
(pascal-val).

ages (pascal-val). Following the prior work [4, 33, 27], the
semantic labels we used in this paper are the 59 categories
with one background class.

Experimental Results Table 1 illustrates the perfor-
mance on pascal-val of ASPP, PPM and the proposed ACE
based FastFCN [27]. We trained the models on different
batch sizes: 4, 6 and 16. 6 is the maximum batch size for
our single GPU. The methods employ ResNet-50 [11] as
backbone. The reported results are obtained for 59 classes
without multi-scale evaluation. All the methods are trained
by our machine for fair comparison. Obviously, our pro-
posed ACE outperforms ASPP and PSP on all the differ-
ent batch size training settings. It’s worth mentioning that,
ASPP based FastFCN’s accuracy influenced severely by
batch size, as also pointed out in Deeplabv3 paper [5], train-
ing DeepLabv3 model with small batch size is inefficient.
Note that our proposed method not only reaches the best
result, but also shows its stable performance for different
batch sizes. The absolute improvements of mIoU of ACE
compared to ASPP are 4.45%, 2.83% and 1.31% for batch
sizes 4, 6, 16 respectively. And 2.39%, 1.04%, and 0.81%
compared to PPM.

Table 2 illustrates the performance compared to the state-
of-the-art methods. For a fair comparison, the reported re-
sult of our method is calculated with background class and
multi-scale evaluation where the network prediction is aver-
aged through multiple scales as in [15, 34, 33, 27]. The re-
sults of the other methods are obtained from the correspond-
ing papers. Our proposed method achieves 53.6% mIoU,
which outperforms the previous methods.

4.3. ADE20K

Dataset ADE20K is used in ImageNet Scene parsing
challenge 2016 and it contains 150 object categories. It is
divided into 20k/2K/3K images for training (a-train), vali-
dation (a-val) and testing (a-test) respectively.

Experimental Results Table 3 demonstrates the results
for a-val set without multi-scale evaluation. Note, one
GeForce RTX 2080 GPU maximum can fit 4 batches, thus
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Method mIoU%
FCN-8s [16] 37.8
ParseNet [15] 40.4
Piecewise [14] 43.3

Deeplabv2 (Res101-COCO) [4] 45.7
RefineNet (Res152) [13] 47.3

PSPNet (Res101) [34] 47.8
EncNet (Res101) [33] 51.7
DANet (Res101) [12] 52.6

FastFCN (Res101,EncNet)* [27] 53.1
Proposed (Res101) 53.6

* FastFCN backbone with EncNet head.

Table 2. Segmentation results on PASCAL-Context dataset
(pascal-val) of the state-of-the-art methods.

the results reported in Table 3 are obtained on batch size 4
and ResNet-50 as backbone. Our proposed method achieves
the best result compared to ASPP and PPM based FastFCN
with an absolute improvement of 1.4% and 0.71% for ASPP
and PPM in terms of mIoU.

Batch Size Head pixAcc% mIoU%

4
ASPP 78.11 37.11
PPM 77.39 37.80

Proposed 78.62 38.51

Table 3. Segmentation results on ADE20K dataset (a-val).

In order to compare with the state-of-the-art methods,
we further train our model with ResNet-101 backbone on
4×GeFore 1080 GPUs with batch size 16. Table 4 shows
the obtained result and results reported in the correspond-
ing papers of the other approaches. The proposed method
provides better result compared to PSPNet with an abso-
lute improvement of 0.52% of mIoU. EncNet achieves the
best result. Except the methodology itself, some part of the
performance gap could be from the training strategy, such
as EncNet is trained with image size of 576×576 and our
method is trained with 480×480.

Moreover, we fine-tune our trained model for another
20 epochs on a-train a-val set with a smaller learning
rate 0.001, then submit the a-test set result to the evalua-
tion website 5. Our method obtains 72.99% (pixAcc) and
37.71% (mIoU) with a final score of 0.5535 which is not
the best but is an encouraging result.

5. Discussion and Conclusion
In summary, in this work, we revisited the atrous con-

volution operation and pyramid pooling modules and pro-
5http://sceneparsing.csail.mit.edu/

Method pixAcc% mIoU%
FCN [16] 71.32 29.39
SegNet [2] 71.00 21.64

DilatedNet [30] 73.55 32.31
CascadeNet [35] 74.52 34.90

RefineNet (Res152) [13] - 40.7
PSPNet (Res101) [34] 81.39 43.29
EncNet (Res101) [33] 81.69 44.65

FastFCN (Res101,EncNet)* [27] 80.99 44.34
Proposed 81.07 43.81

* FastFCN backbone with EncNet head.

Table 4. Segmentation results on ADE20K dataset (a-val) of the
state-of-the-art methods.

pose an effective feature aggregation method based on de-
formable convolution to adaptively extract multiple scale
context for the final segmentation map prediction. Based
on the experimental validation, our method outperforms the
ASPP module and PPM on Pascal-Context and ADE20K
datasets. Noticeably, although our goal for this work is to
propose a better multiple scale context aggregation module,
rather than to obtain the best results on the benchmarks, our
proposed approach achieves state-of-the-art result 53.6%
mIOU on Pascal-Conext and encouraging result 0.5535 on
ADE20K.

All the experiments confirm that an adaptive context en-
coding (ACE) module is benefit for semantic segmentation
which deserve further research. In this work, we directly
use deformable convolution as the tool for ACE and simply
cascaded three deformable convolution blocks, a sophisti-
cated designed architecture is essential. We believe that
further exploration for the usage and improvement of our
feature aggregation idea is promising and necessary in the
design of an efficient semantic segmentation.
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